A Method to Measure the Swelling of Water-Soluble PVDF Binder System and Its Electrochemical Performance for Lithium Ion Batteries

Author:

Toigo Christina,Singh Madhav,Gmeiner Benjamin,Biso Maurizio,Pettinger Karl-Heinz

Abstract

Water-soluble CMC/PVDF binder systems were used to prepare graphite anodes and compared mechanically and electrochemically with CMC/SBR binder systems. The effect of crystallinity of PVDF binder on the mechanical and electrochemical performance of the anodes is studied. A contact free method easy to operate and equipped with high accuracy was developed by using capacitance measurement. The swelling of graphite electrodes was controlled and showed different results for different binder crystallinities (no swelling of binder with high crystallinity vs 12% for medium crystallinity and 17% for low crystallinity binder). The discharge capacity depends on the crystallinity of the binders and half-cells delivered a capacity in the range of 230–360 mAh g−1. The binder with medium crystallinity in particular exhibited the best mechanical and electrochemical performance and showed an excellent C-rate stability with specific capacities up to 10 C. Full cell tests showed good cycling stability over 180 cycles. The water-based PVDF binders seem to be a promising alternative to solvent-based binders.

Funder

Project CompStor

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference19 articles.

1. Particles and polymer binder interaction: a controlling factor in lithium-ion electrode performance;Liu;J. Electrochem. Soc.,2012

2. Investigation of binder distribution in graphite anodes for lithium-ion batteries;Müller;J. Power Sources,2017

3. Unveiling the environment-dependent mechanical properties of porous polypropylene separators;Shutian;Polymer,2014

4. New Solef PVDF aqueous dispersions for lithium batteries: Green PVDF for green batteries;Stanga,2014

5. Introduction to vinylidene fluoride polymers;Ebnesajjad,2013

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3