A Composite State of Charge Estimation for Electric Vehicle Lithium-Ion Batteries Using Back-Propagation Neural Network and Extended Kalman Particle Filter

Author:

Pang HuiORCID,Geng Yuanfei,Liu Xiaofei,Wu LongxingORCID

Abstract

Accurate estimation of battery state of charge (SOC) plays a crucial role for facilitating intelligent battery management system development. Due to the high nonlinear relationship between the battery open-circuit voltage (OCV) and SOC, and the shortcomings of traditional polynomial fitting approach, it is an even more challenging task for predicting battery SOC. To address these challenges, this paper presents a composite SOC estimation approach for lithium-ion batteries using back-propagation neural network (BPNN) and extended Kalman particle filter (EKPF). First, a second order resistance capacitance model is established to make parameters identification of a lithium-ion battery cell using recursive least squares algorithm with forgetting factors (FFRLS) approach. Then, BPNN is used to fit the desired OCV-SOC relationship with relatively high precision. Next, by incorporating the extended Kalman filter (EKF) into the particle filter (PF), an expected EKPF approach is presented to realize the SOC estimation. Last, the performances of SOC estimation using different methods, namely the PF, EKF and the EKPF are compared and analyzed under constant current discharge and urban dynamometer driving schedule working conditions. The experimental results show that the proposed method has higher accuracy and robustness compared to the other two SOC estimation methods.

Funder

Artificial intelligence technology project of Xi’an Science and Technology Bureau

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3