External Quantum Efficiency Spectra of BiVO4 Thin Film Photoanodes under Bias Illumination

Author:

Piekner YifatORCID,Ellis David S.ORCID,Schleuning Markus,Grave Daniel A.ORCID,Schnell Patrick,Dotan Hen,Abdi Fatwa F.ORCID,Rothschild AvnerORCID

Abstract

External quantum efficiency (EQE) of bismuth vanadate thin film photoanodes, measured in a pH 7 potassium phosphate buffer solution with sodium sulfite hole scavenger, was observed to substantially decrease when measured under white light bias (LB). While the EQE exhibited a fast initial decrease across its full spectral range, a ∼3.5 eV (350 nm) feature under front illumination conditions became disproportionally suppressed after being under LB (strongest when it is also incident on the front side of the sample) for several tens of minutes, in spite of this wavelength being outside the spectral range encompassed by the LB source. Applied potential does not have a strong effect on the qualitative behavior. From its different decay time, the wavelength-specific decrease of the 3.5 eV feature, and its responsible mechanism, is distinct from the initial, spectrally uniform decrease of EQE, which happens at a faster timescale and is similar for all illumination conditions. To more closely examine the suppression of the 3.5 eV feature, we compare calculated depth-dependent optical generation profiles and behaviors under different illumination conditions, which imply the involvement of in-gap states and long-lived states deeper into the conduction (or alternatively, valence) band. Possible mechanisms are discussed.

Funder

Israel Science Foundation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3