Spectroelectrochemical Examination of the Ferro-Ferricyanide Redox Reaction: Impacts of Electrode Thickness and Applied Potential

Author:

Ganesan Akash,Zimudzi Tawanda J.,Pothanamkandathil Vineeth,Gorski Christopher A.,Hall Derek M.ORCID

Abstract

Attenuated total reflection, surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a spectrochemical method that can detect changes in concentrations of electroactive species near an electrode surface as well as adsorbed intermediates. However, its application to heterogeneous redox reactions is still infrequent due to complex working electrode fabrication procedures. This study presents a simple procedure for fabricating ATR-SEIRAS platinum electrodes and demonstrates the effectiveness of the procedure with a successful examination of the Fe(CN)6 3−(aq)/Fe(CN)6 4−(aq) reaction. We found that electrode resistance measurements supported by atomic force microscopy were accurate indicators of ATR-SEIRAS response and ATR electrode thickness. Working electrodes with resistances of 600 Ω were approximately 2.4 ± 0.3 nm in thickness and enabled clear detection of the ferrocyanide peak at 2040 cm−1 with universal wafers. Decreasing electrode thickness to 1.0 ± 0.3 nm improved signal strength by 50%. Polarization tests revealed the formation of adsorbed intermediates at 2070 cm−1 with both positive and negative polarizations consistent with an inner sphere reaction mechanism. Applying large positive polarizations (>900 mV vs SHE) formed additional cyanoplatinate complexes, indicating electrode degradation at large applied potentials.

Funder

Institutes of Energy and the Environment Seed Grant Program,Pennsylvania State University

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3