Modeling of Hierarchical Cathodes for Li-Air Batteries with Improved Discharge Capacity

Author:

Hayat Khizar,Vega Lourdes F.,AlHajaj AhmedORCID

Abstract

The non-aqueous Li-air battery is considered to be a promising energy source for electric-vehicles owing to its ultrahigh theoretical energy density. However, its commercialization is limited by the attained lower energy density value, which is mainly due to pore blockage and passivation which requires a more strategic design of the cathode. In this work, we have developed and validated a detailed one-dimensional continuum model of Li-Air battery that helps in examining the potential of hierarchical cathodes in guiding and enhancing the efficiency of ions transport and discharge product formation inside microstructures. The obtained results reveal the importance of reducing the tortuosity (shorten the path of oxygen transport) and increasing porosity at the airside of the hierarchical cathode, which improved discharge capacity at approximately 20.9 and 56%, respectively. The improved capacity is due to enhanced effective oxygen transport, impregnation of electrolyte, alignment of pores, and formation of permeable and low crystalline aggregates of Li2O2. Hence, strategies considering these insights can help in the design and fabrication of non-aqueous Li-air batteries with enhanced energy density and capacity.

Funder

Khalifa University of Science, Technology and Research

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3