Modeling Charging Current Dynamics at Microelectrodes and their Interfaces with Electrolyte and Insulators with a Focus on Microfabricated Gold Microband Electrodes on an SU-8 Substrate

Author:

Abrego Tello Miguel A.ORCID,Lotfi Marchoubeh MahsaORCID,Fritsch IngridORCID

Abstract

The suitability of electrochemical methods for quantitative measurements at microdevices is influenced by the relatively large electrode-insulator interface-to-electrode area ratio, greatly impacting charging dynamics due to interactions among electrolyte, conductor material, and insulator layers. The resulting charging current can overwhelm the faradaic current from redox chemistry. The device studied here features a 70 μm × 100 μm electroactive window, hosts gold coplanar microband electrodes, and is insulated by SU-8, which serves as both overlayer and substrate. The overlayer defines the electroactive length and isolates the leads of the electrodes from the sample solution. Cyclic voltammetry in 0.10 M KCl yields an unexpected, nonlinear dependence of current on scan rate, which can be explained with two empirical approaches. The first employs an equivalent circuit model, involving leakage resistance and double-layer capacitance in parallel, to address both background processes and electrode imperfections as a function of scan rate. The second associates the enhanced current to a changing-chargeable area resulting from interface irregularities. Prior publications on alternative conductor-insulator materials are benchmarked in this study. The comparison of the materials shows that the charging dynamics for devices made with SU-8 lead to more favorable electrochemical performance than for those constructed with glass, epoxy, and silicon nitride, and under certain circumstances, polyimide.

Funder

University of Arkansas Women's Giving Circle

Arkansas Biosciences Institute

National Science Foundation

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3