Resolving Anodic Current and Temperature Distributions in a Polymer Electrolyte Membrane Water Electrolysis Cell Using a Pseudo-Two-Phase Computational Fluid Dynamics Model

Author:

Lopata J.,Kang Z.ORCID,Young J.,Bender G.,Weidner J. W.,Cho H-S.ORCID,Shimpalee S.ORCID

Abstract

Expanding upon our prior experimental work, we constructed a three-dimensional model of a polymer electrolyte membrane water electrolyzer using computational fluid dynamics. We applied the assumption of pseudo-two-phase flow, the flow of two phases with equal velocity. Experimental data were used to obtain parameters and to determine the conditions under which this model was valid. Anodic distributions of current density, temperature, liquid saturation, and relative humidity were obtained at various flow rates. The overall current density and temperature difference from inlet to outlet at the anode agreed strongly with experimental measurements under most circumstances. This verification allowed us to further examine the apparent gas coverage calculated from experimental and model temperature data. Results suggested a low liquid saturation and low relative humidity at the anode due to the consumption of liquid water and water vapor. However, we questioned the accuracy of the pseudo-two-phase assumption at low water feed rates. We concluded that the model was applicable to systems with liquid water feed rates greater than 0.6 ml min−1 cm−2. Therefore, it is a fair screening method that can advise which operating conditions lead to excessive temperatures or drying at the anode, thereby promoting the longevity of the membrane and catalyst.

Funder

National Renewable Energy Laboratory for the U.S. Department of Energy

Department of Energy Office of Science Graduate Student Research Fellowship

This research was supported by the Hydrogen Energy Innovation Technology Development Program of the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3