3D Computational Model for an Electrochemical Gas Separation and Inerting System

Author:

Aryal Utsav RajORCID,Aziz Majid,Prasad Ajay K.ORCID

Abstract

Aircraft fuel tank inerting is employed to reduce the flammability of the fuel vapor in the ullage (air volume above the fuel) by restricting its oxygen concentration to a safe value—12% for commercial aircraft and 9% for military aircraft. Inerting is typically accomplished by displacing oxygen in the ullage with an inert gas like nitrogen. Electrochemical gas separation and inerting system (EGSIS) is an on-board method to generate and supply nitrogen-enriched air (NEA) to the fuel tank. EGSIS combines a polymer electrolyte membrane (PEM) electrolyzer anode which dissociates water to evolve oxygen, and a PEM fuel cell cathode which reduces oxygen from atmospheric air to produce NEA at its outlet. This paper represents the first attempt to model and simulate EGSIS using a three-dimensional, steady state, isothermal model. Various EGSIS performance indicators such as current density, reactant concentration distribution, and polarization curves are studied as a function of operating conditions and design parameters. The results from the computational model are validated against our previous experimental results for various operating conditions. The simulation results reveal the effects of temperature, reactant flowrates, and material property optimization on EGSIS performance. Different operating strategies are explored with the goal of improving system performance.

Funder

Rapid Advancement in Process Intensification Deployment (RAPID) Manufacturing Institute

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of electrochemical hydrogen compression through computational modeling;International Journal of Hydrogen Energy;2022-09

2. Optimization of an Electrochemical Gas Separation and Inerting System;Journal of The Electrochemical Society;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3