Review—Micro/Nanoelectrodes and Their Use in Electrocrystallization: Historical Perspective and Current Trends

Author:

Mao GuangzhaoORCID,Kilani MohamedORCID,Ahmed MostakORCID

Abstract

Crystallization is at the heart of many industrial processes in pharmaceuticals, dyes and pigments, microelectronics, and emerging wearable sensors. This paper reviews nucleation and early-stage crystal growth activated by an electrical pulse at microelectrodes and nanoelectrodes. We review thermodynamic and kinetic theories of electrochemistry developed around microelectrodes. We describe various methods to make microelectrodes and nanoelectrodes. Fundamental understanding is still needed for predicting and controlling nucleation and early-stage crystal growth. Using nanoelectrodes, nucleation and growth kinetics can be studied on one nucleation site at a time. In contrast, on macroelectrodes, nanoparticles are nucleated at random sites and at different times. This gives rise to overlapping growth zones resulting in inhomogeneous particle deposition and growth. The random size and density distributions prevent electrodeposition from being widely adopted as a manufacturing tool for making nanodevices. We describe advances in electrodeposition of metal nanoparticles and organic charge-transfer complexes on micro/nanoelectrodes. We anticipate increased interests in applying electrochemistry for making nanodevices particularly nanosensors and nanosensor arrays. These electrochemically fabricated nanosensor arrays will in turn fulfill the promise of nanoelectrodes as the most advanced analytical tools for medical diagnostics, environmental monitoring, and renewable energy.

Funder

U.S. National Science Foundation

Air Force Office of Scientific Research

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3