Void-free Copper Electrodeposition in High Aspect Ratio, Full Wafer Thickness Through-Silicon Vias with Endpoint Detection

Author:

Schmitt Rebecca P.ORCID,Menk Lyle A.,Baca Ehren,Bower John Eric,Romero Joseph A.,Jordan Matthew B.,Jackson Nathan,Hollowell Andrew E.

Abstract

High density interconnects are required for increased input/output for microelectronics applications, incentivizing the development of Cu electrochemical deposition (ECD) processes for high aspect ratio through-silicon vias (TSVs). This work outlines Cu ECD processes for 62.5 μm diameter TSVs, etched into a 625 μm thick silicon substrate, a 10:1 aspect ratio. Cu ECD in high aspect ratio features relies on a delicate balance of electrolyte composition, solution replenishment, and applied voltage. Implementing a CuSO4-H2SO4 electrolyte, which contains suppressor and a low chloride concentration, allows for a tunable relationship between applied voltage and localized deposition in the vias. A stepped potential waveform was applied to move the Cu growth front from the bottom of the via to the top. Sample characterization was performed through mechanical cross-sections and X-ray computed tomography (CT) scans. The CT scans revealed small seam voids in the Cu electrodeposit, and process parameters were tuned accordingly to produce void-free Cu features. During the voltage-controlled experiments, measured current data showed a characteristic current minimum, which was identified as an endpoint detection method for Cu deposition in these vias. We believe this is the first report of this novel endpoint detection method for TSV filling.

Funder

Sandia National Laboratories

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3