A Method for Quantifying Crossover in Redox Flow Cells through Compositionally Unbalanced Symmetric Cell Cycling

Author:

Neyhouse Bertrand J.ORCID,Darling Robert M.ORCID,Saraidaridis James D.ORCID,Brushett Fikile R.ORCID

Abstract

Active species crossover continues to frustrate durational performance for redox flow batteries (RFBs), requiring thorough evaluation of membrane/separator properties. Characterization workflows typically employ a suite of ex situ experimental techniques, but these approaches do not capture the dynamic conditions (e.g., variable concentrations, alternating polarity) encountered in redox flow cells. Here, we report a facile method for assessing crossover directly in redox flow cells—compositionally unbalanced symmetric cell cycling (CUSCC). Based on conventional symmetric cell cycling, CUSCC imposes a concentration gradient between two chemically similar half-cells, inducing species crossover during galvanostatic cycling, which results in a characteristic “capacity gain” over time. We first develop a zero-dimensional model to describe fundamental processes that underpin the technique and examine the dependence of capacity gain on membrane/separator properties and operating conditions. Subsequently, we perform proof-of-principle experiments using FeCl2/FeCl3 and NafionTM 117 as a representative system and demonstrate results consistent with those predicted from simulations. Finally, we use model fits of the capacity gain data to extract membrane transport parameters, obtaining similar values to those measured from ex situ techniques. Overall, this work describes a promising new approach for characterizing species crossover and expands the RFB testing toolbox.

Funder

National Science Foundation

U.S. Department of Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3