Base-Driven Ring-Opening Reactions of Vinylene Carbonate

Author:

Gogoi NeehaORCID,Lundström RobinORCID,Hernández GuiomarORCID,Berg Erik J.ORCID

Abstract

Vinylene carbonate (VC) is the most commonly applied performance-enhancing electrolyte additives in Li-ion batteries to date. Despite numerous studies, there is a lack of consensus regarding the various reaction pathways of VC and their implications. VC has primarily been observed to either polymerize forming poly(vinylene carbonate) (poly(VC)) or decompose releasing major amounts of CO2, two seemingly contradictory processes. Herein, we present evidence of additional reaction pathways of VC highlighting its role as a H2O scavenging agent. In contrast to the typical electrolyte solvent ethylene carbonate, VC reacts much more rapidly with water impurities, especially when in contact with hydroxides, forming products less likely to influence cell performance. Efficient removal of water and hydroxides is essential to preserve the stability of Li-ion electrolyte solvent and salt, hence guaranteeing a long lifetime of the battery. Model studies pinpointing reaction pathways of electrolytes and additives, as presented herein, are critical not only to improve modern Li-ion cells but also to establish design principles for future battery chemistries.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3