Elucidating the Effects of Temperature on Nonaqueous Redox Flow Cell Cycling Performance

Author:

Quinn Alexander H.ORCID,Ripley Katelyn M.ORCID,Matteucci Nicholas J.ORCID,Neyhouse Bertrand J.ORCID,Brown Chloe A. O.,Woltmann William P.,Brushett Fikile R.ORCID

Abstract

The impact of cell temperature is a relatively underexplored area within the burgeoning field of nonaqueous redox flow batteries (NAqRFBs). Here, we investigate the effect of elevated temperature on the performance of nonaqueous redox electrolytes and associated flow cells. Using a model compound, N-(2-(2-methoxyethoxy)-ethyl)phenothiazine (MEEPT), in a propylene-carbonate-based electrolyte, we experimentally measure the temperature dependence of relevant physicochemical properties (i.e., electrolyte conductivity, viscosity, diffusivity) and electrochemical characteristics (i.e., chemical and electrochemical reversibility) across a temperature range of 30 °C to 70 °C. We then perform flow cell studies, finding that while ohmic and mass transport resistances decrease significantly with increases in temperature for the MEEPT/MEEPT redox couple, accessible electrolyte capacity gradually reduces at temperatures > 50 °C. Ex-situ, post-test characterization using microelectrode voltammetry suggests that this capacity fade is due to instability of the MEEPT radical cation. Finally, using MEEPT as a posolyte and a model viologen negolyte (bis(2-(2-methoxyethoxy)ethyl)viologen), we assemble a full cell and perform polarization analyses, observing a 2× increase in the peak power density when the operating temperature is increased from 30 °C to 70 °C. Broadly, this work highlights opportunities for systematic engineering of nonaqueous electrolytes and flow cells for higher power operation at elevated temperatures.

Funder

National Science Foundation

Office of Naval Research

Basic Energy Sciences

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3