Review—Polymer/Ceramic Interface Barriers: The Fundamental Challenge for Advancing Composite Solid Electrolytes for Li-Ion Batteries

Author:

Horowitz Yonatan,Lifshitz Moran,Greenbaum Anna,Feldman Yuri,Greenbaum Steve,Sokolov Alexei P.,Golodnitsky DianaORCID

Abstract

Composite-solid electrolytes, in which ion-conducting polymers are combined with superionic ceramics, could revolutionize electrochemical-energy-storage devices enabling higher energy density, providing greater stability during operation and enhanced safety. However, the interfacial resistance between the ceramic and polymer phases strongly suppresses the ionic conductivity and presents the main obstacle to the use of these materials. Here, we emphasize the need for a distinct focus on reducing energy barriers to interfacial ion transport and improving the cation transference number. To achieve this goal, it is essential to develop a fundamental understanding of the parameters that influence the interfacial barriers to ion transport in composite electrolytes, and to understand the effect of the type of ceramic (“active” and “inert”) and its content on ion-transport phenomena. We suggest that adapting the polymer chemistry, mainly directed on polymerized ionic liquids, (PolyILs), and combined with functionalization of the surface of ceramic nanoparticles is a promising route for overcoming the high-energy-barrier challenge. Owing to high content of ion-conducting ceramics and high t+ of PolyILs, the fractional contribution of the migrating cationic species to the total ionic conductivity of polymer-in-ceramic electrolytes via an interfacial percolation path, will be close to unity, thus eliminating complications that might arise from emerging concentration gradients during the operation of solid-state batteries.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3