Surface Modification Improves Spinel LiCoO2 Li-Ion Battery Cathode Materials Grown by Low Temperature Solvothermal Flow Reaction

Author:

Zhang Yan,Gulzar Umair,Lonergan Alex,Grant Alex,Carroll Aoife,Roy Ahin,Nicolosi Valeria,Keene Tony D.,O’Dwyer ColmORCID

Abstract

Methods that provide routes to LiCoO2 growth with lower energy requirements from recycled battery cathode ashes are important for sustainable Li-ion battery technology . Here, a low temperature route to a stable, coated spinel-phase LT-LCO material with secondary Co3O4 phase can be achieved at 300 °C directly from the layered double hydroxide [Li2(ox)2][Co5(OH)8] product of solvothermally synthesized LiOH and CoCl2. The low-temperature LiCoO2 materials (known as LT-LCO) consist of spinel-phase LCO and secondary Co3O4 phase. As a cathode in lithium batteries, we used a solution-based method of coating with an ionic conductor LiAlO2 with AlF3 to mitigate sluggish reversible lithiation kinetics and the poor cycling and rate performance of as-synthesized spinel LT-LCO. The coating modification promotes reversible lithium ion transfer and stabilizes the spinel structure. The modified LT-LCO cathode has significantly better overall capacity and rate performance, with a capacity retention of ∼80 mAh g−1 after 150 cycles (factoring the LT-LCO and Co3O4 mass). The initial first cycle coulombic efficiency significantly improves to >95%. The data show that even spinel phase LCO grown by this solvothermal route cycles stably with a useful specific capacity and rate response in the voltage range 2.0–4.2 V.

Funder

Science Foundation Ireland

H2020 Excellent Science

Irish Research Council

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3