“Zero” Porosity High Loading NMC622 Positive Electrodes for Li-Ion Batteries

Author:

Alolaywi Haidar Y.ORCID,Uzun KubraORCID,Cheng Yang-TseORCID

Abstract

LiNi0.6Mn0.2Co0.2O2 (NMC622) is a widely used positive electrode material for lithium-ion batteries, including electric vehicles. In this work, we investigated the effects of porosity, ranging from “zero” to the typical 35%, on the electrochemical behavior of high-loading NMC622 electrodes. Although it is well known that the energy density of the electrode increases with increasing areal capacity and decreasing porosity, NMC-positive electrodes with exceedingly low porosity (e.g., near zero) and high loading (e.g., 4 mAh cm−2) have not been investigated. Here, we report an intriguing observation that the “zero porosity” NMC electrode can have higher capacity at low C-rates, and the volumetric energy density significantly increases to 1739 Wh l−1 compared to 805 Wh l−1 of conventional electrodes of 35% porosity. We performed cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to help understand this observation. This work provides new insights into the effects of porosity on the electrochemical behavior of high-loading positive electrodes.

Funder

General Motors Corporation

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3