Mechanisms of Exclusive Scale Formation in the High Temperature Oxidation of Alloys

Author:

Blades William H.ORCID,Opila Elizabeth J.,Sieradzki KarlORCID

Abstract

The high temperature oxidation of alloys is most often considered within the continuum framework developed by C. Wagner. We argue that in order to make progress in understanding exclusive scale formation, one needs to examine the atomic-scale kinetic processes that today are amenable to a variety of experimental, computational and theoretical approaches. In our discussion, we suggest that there is an analogy between the kinetic processes required for exclusive scale formation and thin film layer-by-layer growth. In both cases, the magnitude of the Ehrlich-Schwoebel barrier sets an effective length scale for growth, that if too large, results in three-dimensional rather than lateral island or oxide growth. In this event, exclusive scale formation can only occur if there is a sufficiently large density of oxide nucleation events at the surface of the alloy. We suggest that a suitably identified, dilute alloy component, could serve as a “surfactant” that segregates to the surface and is capable of enhancing the nucleation density.

Funder

Office of Naval Research

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3