Methods—Ampero-Coulometry: A New Technique for Understanding Lithium-Sulfur Electrochemistry

Author:

Gulzar Umair,Lonergan Alex,Egorov Vladimir,Zhang Yan,Grant Alex,Carroll Aoife,O’Dwyer ColmORCID

Abstract

Despite limited commercial success, lithium sulfur technology (LST) is still far from competing existing Li-ion technology. One of the main reasons hindering the success of LST is the complexity of lithium-sulfur chemistry during electrochemical charging and discharging. Dissolution of sulfur species in the electrolyte solution exacerbates the difficulties of this system. Therefore, a comprehensive understanding of sulfur species and their kinetics during charge/discharge process is paramount for a high-performance lithium-sulfur battery. We present a new technique we refer to as Ampero-Coulometry, which takes the chronoamperometric (galvanostatic) charge-discharge curves and mathematically transforms them to a series of curves that reveal the cation diffusional rate inside carbon-sulfur porous electrodes at different states of charge/capacity. This technique allowed us to track the overall Li+ ion diffusional rate inside a Li-S cell over a complete state of discharge. As dissolution of sulfur species and their interplay inside a porous sulfur electrode has a significant role in limiting Li-S battery capacity, and method allows correlation between the known mechanism of polysulfide dissolution, the kinetics of a sulfur electrode, and its response.

Funder

H2020 LEIT Advanced Manufacturing and Processing

Irish Research Council

Enterprise Ireland

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3