Accelerated Degradation Protocols for Iridium-Based Oxygen Evolving Catalysts in Water Splitting Devices

Author:

Spöri CamilloORCID,Brand Cornelius,Kroschel MatthiasORCID,Strasser PeterORCID

Abstract

Hydrogen production by proton exchange membrane (PEM) water electrolysis is among the promising energy storage solutions to buffer an increasingly volatile power grid employing significant amounts of renewable energies. In PEM electrolysis research, 24 h galvanostatic measurements are the most common initial stability screenings and up to 5,000 h are used to assess extended stability, while commercial stack runtimes are within the 20,000–50,000 h range. In order to obtain stability data representative of commercial lifetimes with significantly reduced test duration an accelerated degradation test (ADT) was suggested by our group earlier. Here, we present a study on the broad applicability of the suggested ADT in RDE and CCM measurements and showcase the advantage of transient over static operation for enhanced catalyst degradation studies. The suggested ADT-1.6 V protocol allows unprecedented, reproducible and quick assessment of anode catalyst long-term stability, which will strongly enhance degradation research and reliability. Furthermore, this protocol allows to bridge the gap between more fundamental RDE and commercially relevant CCM studies.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3