Hydrogen Gas Promoted Self-Limiting Copper Monolayer Deposition on Platinum

Author:

Loichet Torres Paulette A.ORCID,El-Sayed Hany A.ORCID,Schwämmlein Jan N.ORCID,Friedrich FranziskaORCID,Gasteiger Hubert A.ORCID

Abstract

A hydrogen gas promoted approach to achieve copper underpotential deposition (UPD) on platinum surfaces was developed to form a copper monolayer on polycrystalline platinum and carbon supported platinum catalysts (Pt/C) in a Cu2+-containing electrolyte, serving as alternative to the commonly used electrochemical deposition methods that require external potential control. Initially, the amount of deposited copper in the presence of dissolved hydrogen was determined via fast stripping voltammetry. Subsequently, by monitoring the open circuit potential drop of Pt disk and Pt/C thin-film electrodes upon exposure of an air saturated electrolyte to H2 containing gas, it could be shown that self-limiting Cu coverages of essentially one monolayer can reliably be obtained for 0.1% and 3% H2/Ar mixtures. In a second part, a cell was designed aiming to facilitate the gram-scale preparation of CuUPDPt/C catalysts by the H2 gas promoted approach. The formation of a Cu UPD layer on the Pt nanoparticles supported on carbon with a coverage slightly higher than a monolayer was successfully validated. However, the reaction cell introduced non-idealities at the solution/gas interface, which would need to be optimized to achieve a perfectly self-limiting Cu monolayer on the Pt nanoparticles by the H2 promoted deposition.

Funder

International Graduate School of Science and Engineering (IGSSE) - Technische Universität München

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3