Review—Solid and Polymer Electrolyte Materials and Related Processing Methods Suitable for Three-Dimensional Battery Architectures

Author:

Church Richard BertramORCID,Hart A. JohnORCID

Abstract

Three-dimensional (3D) battery architectures have been envisioned to enable high energy density electrodes without the associated power drop experienced by planar cells. However, the development of 3D cells is hampered by difficulties producing conformal solid-state electrolytes (SSE), solid polymer electrolytes (SPE) and gel polymer electrolytes (GPE) that are pinhole-free and have adequate ionic conductivities. Fortunately, electrolytes in 3D cells are often utilized at lower thickness, which may compensate the decreased ionic conductivity. Here, we comprehensively review potential 3D SSE, SPE and GPE electrolyte materials by compiling their thickness and room temperature ionic conductivity. We use area specific resistance (ASR) as a metric to compare 3D electrolytes with one another and conventional electrolytes. We find that certain process-material combinations, such as atomic layer deposition of SSEs, electrodeposition of SPEs and GPEs, and initiated chemical vapor deposition of SPEs demonstrate ASRs beneath the interfacial impedances of Li-based systems and approach state-of-the-art electrolytes. We also comment on additional factors, such as electrochemical stability, that should be evaluated when determining 3D electrolyte suitability. Future research should focus on adapting known materials chemistries for conformal deposition techniques to further improve the ionic conductivity, as these techniques are capable of producing the necessary thicknesses and conformality.

Funder

Automobili Lamborghini

Natural Sciences and Engineering Research Council of Canada

Alberta Student Aid

The MIT Portugal Program

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3