Growth of Ultrathin Well-Defined and Crystalline Films of Co3O4 and CoOOH by Electrodeposition

Author:

Pacheco I.,Bouvier M.,Magnussen O. M.,Allongue P.ORCID,Maroun F.

Abstract

Cobalt oxides are among the best noble metal free catalysts for the oxygen evolution reaction in alkaline electrolyte. To elucidate the origin of their catalytic properties, crystalline films with well-defined orientation and surface quality are needed. In this work, we study the growth of ultrathin crystalline films of cobalt oxides layers on Au(111). The films are grown by electrodeposition at reflux temperature in cobalt nitrate alkaline solutions in the presence of tartrate. The film structure and morphology is studied by X-ray diffraction, atomic force microscopy and scanning electron microscopy, as a function of the deposition parameters (solution composition, potential). Single phase Co3O4(111) and CoOOH(001) films in epitaxy with the Au(111) substrate could be obtained by choosing the conditions of deposition. The CoOOH films present a smooth morphology with several 100 nm wide pyramidal islands with stepped facets. The morphology of Co3O4 films consists of three-dimensional densely packed triangular islands with flat tops. Finally, we investigate the influence of the substrate on the morphology of Co3O4 films by depositing them on Au(100) and a CoOOH buffer layer. The nucleation and growth modes as well as the reaction mechanisms are discussed.

Funder

Deutsche Forschungsgemeinschaft

Agence Nationale de la Recherche

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3