Investigating the Structure and Performance of Electrodes Made by Dry and Wet Slurry Processes

Author:

Uzun KubraORCID,Sharma BhamitiORCID,Frieberg Bradley R.,Wang Ming,Hu Jiazhi,Li Anita,Huang Xiaosong,Cheng Yang-TseORCID

Abstract

Performance, cost, and safety are vital factors in producing and handling lithium-ion batteries. Using a dry process reduces the cost and environmental impact of producing large-scale lithium-ion battery electrodes significantly as solvents are eliminated. Thus, in this study, solvent-free dry electrostatic spray deposition (ESD) and conventional slurry processes were compared to uncover the influence of the manufacturing process on thick LiNi0.8Mn0.1Co0.1O2 (NMC 811) positive electrodes. More pressure during calendering was found necessary for the dry-made (dry) electrodes to have the same porosity, leading to more cracks within the NMC particles and better adhesion. At slower discharge rates, below 2 C, the dry electrodes exhibited a higher specific capacity or about the same capability than that of the slurry-made ones. At higher discharge rates, greater than 2 C, both types of electrodes have poor rate performance, though the slurry-made (slurry) electrodes had a slightly higher capacity. Despite more calendering-induced cracks in the dry electrodes, both electrodes had comparable long-term cycling behavior when tested in full cells with graphite-negative electrodes. This study shows the viability of using the dry-powder ESD process for manufacturing thick electrodes with high active material content, meeting the need for high energy demand.

Funder

General Motors Corporation

Publisher

The Electrochemical Society

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3