Density Functional Theory Study of the Initial Stages of Cl-Induced Degradation of α-Cr2O3 Passive Film

Author:

Oware Sarfo KofiORCID,Murkute PratikORCID,Isgor O. BurkanORCID,Zhang YongfengORCID,Tucker JulieORCID,Árnadóttir LíneyORCID

Abstract

The ion exchange and point defect models are two prominent models describing the role of anions, such as chlorides, in the degradation of passive oxide films. Here the thermodynamic feasibility of critical steps of Cl-induced degradation of a hydroxylated α-Cr2O3 (0001) surface, as proposed by these two models, are studied. Both models begin with Cl substitution of surface OH and H2O, which becomes less favorable with increasing Cl coverage. The initial stages of Cl-induced breakdown of the α-Cr2O3 depend on Cl coverage and the presence of O vacancy near the surface as follows: (1) neither Cl insertion (supporting the ion exchange model) nor Cr vacancy formation (supporting the point defect model) is feasible at low Cl coverages except in the presence of O vacancies near the surface, where Cl insertion is thermodynamically feasible even at low coverages, (2) in the absence of O vacancies, Cr vacancy formation becomes feasible from 10/12 ML onwards whereas Cl insertion by exchange with subsurface OH only becomes feasible at full coverage. This implies that at higher coverages Cl-induced degradation first initiatesthrough a vacancy formation mechanism, but both insertion and vacancy formation would be feasible at full coverage.

Funder

National Science Foundation

U.S. Department of Energy, Nuclear Energy University programs

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3