Abstract
The ion exchange and point defect models are two prominent models describing the role of anions, such as chlorides, in the degradation of passive oxide films. Here the thermodynamic feasibility of critical steps of Cl-induced degradation of a hydroxylated α-Cr2O3 (0001) surface, as proposed by these two models, are studied. Both models begin with Cl substitution of surface OH and H2O, which becomes less favorable with increasing Cl coverage. The initial stages of Cl-induced breakdown of the α-Cr2O3 depend on Cl coverage and the presence of O vacancy near the surface as follows: (1) neither Cl insertion (supporting the ion exchange model) nor Cr vacancy formation (supporting the point defect model) is feasible at low Cl coverages except in the presence of O vacancies near the surface, where Cl insertion is thermodynamically feasible even at low coverages, (2) in the absence of O vacancies, Cr vacancy formation becomes feasible from 10/12 ML onwards whereas Cl insertion by exchange with subsurface OH only becomes feasible at full coverage. This implies that at higher coverages Cl-induced degradation first initiatesthrough a vacancy formation mechanism, but both insertion and vacancy formation would be feasible at full coverage.
Funder
National Science Foundation
U.S. Department of Energy, Nuclear Energy University programs
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献