Carbon Inverse Opal Macroporous Monolithic Structures as Electrodes for Na-ion and K-ion Batteries

Author:

Carroll Aoife,Grant Alex,Zhang Yan,Gulzar Umair,Ahad Syed Abdul,Geaney Hugh,O’Dwyer ColmORCID

Abstract

Highly ordered three-dimensionally structured carbon inverse opals (IOs) produced from sucrose are stable electrodes in sodium-ion and potassium-ion batteries. The walls of the ordered porous carbon structure contain short-range graphitic areas. The interconnected open-worked structure defines a conductive macroporous monolithic electrode that is easily wetted by electrolytes for Na-ion and K-ion systems. Electrochemical characterization in half-cells against Na metal electrodes reveals stable discharge capacities of 25 mAh g−1 at 35 mA g−1 and 40 mAh g−1 at 75 mA g−1 and 185 mA g−1. In K-ion half cells, the carbon IO delivers capacities of 32 mAh g−1 at 35 mA g−1 and ∼25 mAh g−1 at 75 mA g−1 and 185 mA g−1. The IOs demonstrate storage mechanisms involving both capacitive and diffusion-controlled processes. Comparison with non-templated carbon thin films highlights the superior capacity retention (72% for IO vs 58% for thin film) and cycling stability of the IO structure in Na-ion cells. Robust structural integrity against volume changes with larger ionic radius of potassium ions is maintained after 250 cycles in K-ion cells. The carbon IOs exhibit stable coulombic efficiency (>99%) in sodium-ion batteries and better coulombic efficiency during cycling compared to typical graphitic carbons.

Funder

European Commission

Irish Research Council

Science Foundation Ireland

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3