High-Precision State of Charge Estimation of Urban-Road-Condition Lithium-Ion Batteries Based on Optimized High-Order Term Compensation-Adaptive Extended Kalman Filtering

Author:

Feng RenjunORCID,Wang Shunli,Yu Chunmei,Zhou Heng,Fernandez Carlos

Abstract

It is significant to improve the accuracy of estimating the state of charge (SOC) of lithium-ion batteries under different working conditions on urban roads. In this study, an improved second-order polarized equivalent circuit (SO-PEC) modeling method is proposed. Accuracy test using segmented parallel exponential fitting parameter identification method. Online parameter identification using recursive least squares with variable forgetting factors(VFFRLS). An optimized higher-order term compensation-adaptive extended Kalman filter (HTC-AEKF) is proposed in the process of estimating SOC. The algorithm incorporates a noise-adaptive algorithm that introduces noise covariance into the recursive process in real-time to reduce the impact of process noise and observation noise on the accuracy of SOC estimation. Multiple iterations are performed for some of the processes in the extended Kalman filter(EKF) to compensate for the accuracy impact of missing higher-order terms in the linearization process. Model validation results show over 98% accuracy. The results after comparing with the EKF algorithm show a 4.1% improvement in SOC estimation accuracy under Hybrid Pulse Power Characterization(HPPC) working conditions. 2.7% improvement in accuracy in Dynamic Stress Test(DST) working conditions. 2.1% improvement in Beijing Bus Dynamic Stress Test(BBDST) working conditions. The superiority of the algorithm is demonstrated.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3