Abstract
Polymer-electrolyte fuel cells (PEFCs) utilize porous catalyst layers (CLs) formed of carbon supports on which Pt particles are deposited and ionomer films are distributed. Carbon supports themselves have varying degrees of porosity, where high-surface-area carbon (HSC) supports possess nanometer-sized interior pores that are suitable for Pt nanoparticle deposition but prevent deleterious ionomer penetration. However, this requires protons to transport through water pathways inside the pores. To understand the generation of such pathways, we examine the various mechanisms of water uptake by PEFC CLs, and the subsequent impact of water uptake on Pt utilization through developing a multiphysics model of the water wetting phenomena as a function of relative humidity. The model details water uptake via ionomer absorption, capillary condensation in the hydrophilic pores, and surface adsorption using molecular potential that account for various water and surface dipole interactions. The results quantify how mesoporous carbons with highly hydrophilic pores increase Pt utilization through the development of wetted layers, which at the same time enable optimized gas-transport pathways. It also demonstrates the impact of pore-size distribution (PSD) and physical and chemical parameters on the water uptake phenomena, allowing for future CL particle and structure optimization.
Funder
Hydrogen and Fuel Cell Technologies Office
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials