First Cycle Cracking Behaviour Within Ni-Rich Cathodes During High-Voltage Charging

Author:

Wade A.ORCID,Llewellyn A. V.ORCID,Heenan T. M. M.ORCID,Tan C.,Brett D. J. L.,Jervis RhodriORCID,Shearing P. R.ORCID

Abstract

Increasing the operating voltage of lithium-ion batteries unlocks access to a higher charge capacity and therefore increases the driving range in electric vehicles, but doing so results in accelerated degradation via various mechanisms. A mechanism of particular interest is particle cracking in the positive electrode, resulting in losses in capacity, disconnection of active material, electrolyte side reactions, and gas formation. In this study, NMC811 (LiNi0.8Mn0.1Co0.1O2) half-cells are charged to increasing cut-off voltages, and ex situ X-ray diffraction and X-ray computed tomography are used to conduct post-mortem analysis of electrodes after their first charge in the delithiated state. In doing so, the lattice changes and extent of cracking that occur in early operation are uncovered. The reversibility of these effects is assessed through comparison to discharged cathodes undergoing a full cycle and have been relithiated. Comparisons to pristine lithiated electrodes show an increase in cracking for all electrodes as the voltage increases during delithiation, with the majority of cracks then closing upon lithiation.

Funder

Engineering and Physical Sciences Research Council

Royal Academy of Engineering

Faraday Institution

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3