TiO2 Nanotube-Based Sensor for the Detection of Cyanide in Water

Author:

Tembo P. M.ORCID,Dhabarde N.,Subramanian V.ORCID

Abstract

Cyanide is an acutely toxic compound capable of spreading to ground and surface waters more easily than other industrial contaminants. Real-time monitoring of cyanide concentrations calls for a robust and quick method for cyanide detection in water. This work focuses on the application of anodized titanium dioxide (TiO2) nanotubes as a substrate, with suitable and relatively inexpensive additives, for the sensitive and selective electrochemical detection of cyanide in water. The TiO2 nanotubes were modified by the addition of iron (Fe) and sulfur (S) as sensing elements. Characterization of the prepared sensing platform was performed using X-ray diffraction and electron microscopy. Current-time measurements indicated that i) increasing cyanide concentration can perturb the current proportionally, ii) the differential in the current can be used as a calibration for quantitative detection of cyanide, and iii) the sensor is highly selective even in the presence of interfering species. A cyanide detection limit of 0.49 μM and a sensitivity of −13.8 mAcm−2 μM−1 were established. The sensor response indicated that an Fe-S-TiO2 nanotube sensing electrode could effectively and repeatedly be used over a period of several months for the sensing of cyanide concentrations lower than the recommended WHO and USEPA limits in water.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3