Abstract
Carbon fiber microelectrodes (CFMEs) have been used to detect neurotransmitters and other biomolecules using fast-scan cyclic voltammetry (FSCV) for the past few decades. This technique measures neurotransmitters such as dopamine and, more recently, physiologically relevant neuropeptides. Oxytocin, a pleiotropic peptide hormone, is physiologically important for adaptation, development, reproduction, and social behavior. This neuropeptide functions as a stress-coping molecule, an anti-inflammatory agent, and serves as an antioxidant with protective effects especially during adversity or trauma. Here, we measure tyrosine using the Modified Sawhorse Waveform (MSW), enabling enhanced electrode sensitivity for the amino acid and oxytocin peptide. Applying the MSW, decreased surface fouling and enabled codetection with other monoamines. As oxytocin contains tyrosine, the MSW was also used to detect oxytocin. The sensitivity of oxytocin detection was found to be 3.99 ± 0.49 nA μM−1, (n = 5). Additionally, we demonstrate that applying the MSW on CFMEs allows for real time measurements of exogenously applied oxytocin on rat brain slices. These studies may serve as novel assays for oxytocin detection in a fast, sub-second timescale with possible implications for in vivo measurements and further understanding of the physiological role of oxytocin.
Funder
National Institute of Mental Health
Division of Industrial Innovation and Partnerships
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献