Modeling the Impact of Manufacturing Uncertainties on Lithium-Ion Batteries

Author:

Schmidt Oke,Thomitzek Matthias,Röder Fridolin,Thiede Sebastian,Herrmann Christoph,Krewer UlrikeORCID

Abstract

This paper describes and analyzes the propagation of uncertainties from the lithium-ion battery electrode manufacturing process to the structural electrode parameters and the resulting varying electrochemical performance. It uses a multi-level model approach, consisting of a process chain simulation and a battery cell simulation. The approach enables to analyze the influence of tolerances in the manufacturing process on the process parameters and to study the process-structure-property relationship. The impact of uncertainties and their propagation and effect is illustrated by a case study with four plausible manufacturing scenarios. The results of the case study reveal that uncertainties in the coating process lead to high deviations in the thickness and mass loading from nominal values. In contrast, uncertainties in the calendering process lead to broad distributions of porosity. Deviations of the thickness and mass loading have the highest impact on the performance. The energy density is less sensitive against porosity and tortuosity as the performance is limited by theoretical capacity. The latter is impacted only by mass loading. Furthermore, it is shown that the shape of the distribution of the electrochemical performance due to parameter variation aids to identify, whether the mean manufacturing parameters are close to an overall performance optimum.

Funder

German Federal Ministry of Education and Research

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3