Operando Analysis of the Gassing and Swelling Behavior of Lithium-ion Pouch Cells during Formation

Author:

Stock SandroORCID,Diller Felix,Böhm Jonas,Hille LucasORCID,Hagemeister Jan,Sommer Alessandro,Daub Rüdiger

Abstract

Improving the energy density of lithium-ion batteries advances the use of novel electrode materials having a high specific capacity, such as nickel-rich cathodes and silicon-containing anodes. These materials exhibit a high level of gas evolution during formation, which poses a safety hazard during operation. Analyzing the gas volume and the gassing duration is thus crucial to assess material properties and determining suitable formation procedures. This paper presents a novel method for evaluating both gassing and swelling simultaneously to determine the operando gas evolution of pouch cells with volume resolutions below 1 μl. Dual 1D dilatometry is performed using a cell expansion bracket which applies a quasi-constant force on the cell, thus providing reproducible formation conditions. The method was validated using the immersion bath measurement method and NCM/graphite pouch cells were compared to high-energy NCA/silicon-graphite pouch cells. Silicon-containing cells exhibited gas evolution higher by a factor of seven over ten successive cycles, thus demonstrating the challenges of high-silicon anodes. The concurrent dilation analysis further revealed a constant thickness increase over the formation, indicating continuous SEI growth and lithium loss. Consequently, the method can be used to select an ideal degassing time and to adjust the formation protocols with respect to gas evolution.

Funder

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3