Study on Ion Transport Mechanism of Zinc-Nickel Single-Flow Battery with Different Porous Electrode Structures based on Lattice Boltzmann Method

Author:

Luo Jianguo,Yao ShouguangORCID,Liu Rui,Kan Xin,Yang Yihao,Cheng Jie

Abstract

Since the microstructure of porous electrode is very important to the performance of zinc-nickel single-flow battery, this paper reconstructed the microstructure of porous nickel oxide electrode by quartet structure generation set (QSGS) method. The flow mass transfer and electrochemical reaction in porous electrode were simulated by lattice Boltzmann method (LBM). The effects of different porous electrode structures (porosity, particle size and electrode thickness) on local ion concentration distribution and charging performance are studied from the perspective of seepage and mass transfer in pores. It is found that the ion concentration in the electrode presents an uneven distribution due to the randomness of the particle size and distribution of active substances. The uneven distribution of OH concentration caused the difference of charging depth in the direction of electrode thickness, and the uneven distribution of H + concentration caused the difference of charging depth in the radial direction of particles. Under different pore structures, the decrease of porosity and particle size can increase the diffusion rates of OH and H +, and then promote the electrochemical reaction rate, improve the charging speed of the battery, and improve the performance of the battery. The larger electrode thickness will increase the OH diffusion resistance in the electrode, which is not conducive to the diffusion of OH and reduce the electrochemical reaction rate, thus affecting the diffusion of H +, increasing the concentration polarization and affecting the charging efficiency of the battery. The uneven distribution of OH concentration caused the difference of charging depth in the direction of electrode thickness, while the uneven distribution of H + concentration caused the difference of charging depth in the radial direction of particles. Under different pore structures, the decrease of porosity and particle size can increase the diffusion rate of OH and solid phase H +, and then promote the electrochemical reaction rate and accelerate the charging speed. The larger electrode thickness increases the OH diffusion resistance in the electrode, which is not conducive to OH diffusion, and then affects H + diffusion and increases concentration polarization.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3