Rapid Simulation of Electro-Chemo-Mechanical Deformation of Li-ion Batteries Based On Porous Electrode Theory

Author:

Ipers Gerrit,Jiao Junning,Pathak Shakul,Fang RuqingORCID,Berliner Marc D.ORCID,Li Wei,Li WeihanORCID,Braatz Richard D.ORCID,Bazant Martin Z.ORCID,Zhu JunerORCID

Abstract

Lithium-ion batteries change their geometric dimensions during cycling as a macroscopic result of a series of microscale mechanisms, including but not limited to diffusion-induced expansion/shrinkage, gas evolution, growth of solid-electrolyte interphase, and particle cracking. Predicting the nonlinear dimensional changes with mathematical models is critical to the lifetime prediction, health management, and non-destructive assessment of batteries. In this study, we present an approach to implement an elastoplasticity model for powder materials into the porous electrode theory (PET). By decomposing the overall deformation into elastic, plastic, and diffusion-induced portions and using the powder plasticity model to describe the plastic portion, the model can capture the reversible thickness change caused by Li-ion (de-)intercalation as well as the irreversible thickness change due to the rearrangement and consolidation of particles. For real-world applications of the model to predict battery health and safety, the key lies in solving the mathematical equations rapidly. Here, we implemented the coupled model into the open-source software PETLION for millisecond-scale simulation. The computational model is parameterized using values gathered from literature, tested under varying conditions, briefly compared to real-world observations, and qualitatively analyzed to find parameter-output relations.

Funder

Center for Battery Sustainability

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3