State of Health Prediction of Lithium-Ion Batteries Using Combined Machine Learning Model Based on Nonlinear Constraint Optimization

Author:

Liang YawenORCID,Wang Shunli,Fan Yongcun,Hao XueyiORCID,Liu Donglei,Fernandez Carlos

Abstract

Accurate State of Health (SOH) estimation of battery systems is critical to vehicle operation safety. However, it’s difficult to guarantee the performance of a single model due to the unstable quality of raw data obtained from lithium-ion battery aging and the complexity of operating conditions in actual vehicle operation. Therefore, this paper combines a long short-term memory (LSTM) network with strong temporality, and support vector regression (SVR) with nonlinear mapping and small sample learning. A novel LSTM-SVR combined model with strong input features, less computational burden and multiple advantage combinations is proposed for accurate and robust SOH estimation. The nonlinear constraint optimization is used to assign weights to individual models in terms of minimizing the sum of squared errors of the combined models, which can combine strengths while compensating for weaknesses. Furthermore, voltage, current and temperature change curves during the battery charging were analyzed, and indirect health features (IHFs) with a strong correlation with capacity decline were extracted as model inputs using correlation analysis and principal component analysis (PCA). The NASA dataset was used for validation, and the results show that the LSTM-SVR combined model has good SOH estimation performance, with MAE and RMSE all less than 0.75% and 0.97%.

Funder

National Natural Science Foundation of China

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3