Abstract
Electrochemical polishing (ECP) offers incomparable advantages and great potential in metal polishing by surface errors correction. This paper systematically investigates the ultimate roughness and surface errors correction ability of ECP over different spatial frequency ranges. This paper further explores the law of ECP influencing errors at different frequency ranges, proposes and clarifies the concept of critical spatial frequency, and studies the law of polishing parameters affecting critical spatial frequency by using spatial frequency spectrum analysis. The surface roughness evolution and ultimate roughness of ECP were investigated using the surface error filtering method based on the critical spatial frequency. The ultimate roughness of ECP was determined by two different strategies, (i) stepwise polishing and (ii) one-step polishing. In addition, the stepwise polishing was also investigated for any possible inconsistency with one-step polishing on the final surface roughness. As ECP progressed, the optimization speed of surface roughness gradually decreased, and the surface roughness eventually reached a stable limiting value. Further analysis revealed that crystal corrosion is mainly responsible for inhibiting surface roughness optimization.
Funder
the research fund from the Science and Technology Innovation Committee of Shenzhen Municipality
National Natural Science Foundation of China
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献