Finite Element Modeling of Chemical and Electrochemical Protection Mechanisms Offered by Mg-Based Organic Coatings to AA2024-T351

Author:

Moraes C. V.ORCID,Santucci R. J.ORCID,Scully J. R.,Kelly R. G.

Abstract

A finite element model of the protection mechanisms offered by Mg-based organic coatings was developed. The model predicted the change in the corrosion potential of AA2024-T351 as a function of pH, water layer thickness, and the inhibition of oxygen reduction reaction. The pH in the solution was calculated taking into account Mg dissolution, precipitation of Mg(OH)2, Al dissolution, and hydrolysis of Al3+ ions. The predicted critical pH value at which the corrosion potential of AA2024-T351 sharply decreases to values below pitting and pit repassivation potentials under full immersion conditions was in accordance with experimental observations. A limiting water layer thickness below which the pH-induced pit repassivation mechanism is not predicted to occur was calculated. If the inhibition of oxygen reduction reaction by Mg(OH)2 is considered, the pH-induced repassivation mechanism becomes feasible at thinner water layers. Cathodic protection offered by Mg-rich primers was modeled as a function of coating resistance, water layer thickness, and electrolyte chemistry. The magnitude of the resistance of the film in which Mg pigments are embedded mitigates the extent of the cathodic protection. The change in local pH due to corrosion reactions affected the galvanic potentials obtained. The framework developed can be used to help identify chemical inhibitors that can operate by the chemical protection mode described in this work.

Funder

U.S. Naval Research Laboratory

U.S. Air Force Academy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3