Correlating Mn Dissolution and Capacity Fade in LiMn0.8Fe0.2PO4/Graphite Cells During Cycling and Storage at Elevated Temperature

Author:

Leslie Kate,Harlow JessieORCID,Rathore DivyaORCID,Tuul KennethORCID,Metzger MichaelORCID

Abstract

LiMnxFe1−xPO4 is a promising positive electrode material for Li-ion batteries. In order to understand the failure mechanisms of this material, LiMn0.8Fe0.2PO4/graphite pouch cells were cycled at 40 or 55 °C over three voltage ranges: 2.5–3.6 V (Fe plateau), 3.6–4.2 V (Mn plateau), and 2.5–4.2 V (full voltage range). Cells cycled at higher temperature and over the full voltage range had the highest capacity fade. Differential voltage analysis showed that cells cycled over the Mn plateau and full voltage range had the highest Li inventory loss, and there was no active mass loss in any of the cells. Micro X-ray fluorescence spectroscopy showed that cells with higher levels of Mn deposition on the negative electrode had higher Li inventory loss. Constant voltage storage experiments at 55 °C showed rapid capacity loss for cells held at top of charge. Despite having similar Li inventory loss trends to the cycled cells, there was less Mn deposition on the negative electrodes. Thus, the capacity fade mechanisms are different for cells that undergo cycling and storage.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3