Review—Nanomaterials Green Synthesis for High-Performance Secondary Rechargeable Batteries: Approaches, Challenges, and Perspectives

Author:

Pakseresht SaraORCID,Kuruahmet Deniz,Guler Aslihan,Duman Seyma Ozcan,Gungor Hatice,Cetinkaya Busra,Martynkova Grazyna Simha

Abstract

Significant climate change and variable fossil energy prices are forcing us to minimize fossil fuel consumption and develop innovative energy conversion and storage systems capable of reducing carbon dioxide emissions. Batteries are the most common form of alternative energy systems, and cathode materials are critical for their performance. Their low-rate performance and short lifespan severely hamper the efficiency of cathode materials. The adoption of nanotechnology is essential to improve the cathode life cycle and maintain capacity. Conventional synthetic techniques face serious problems in producing complex nanomaterials with precise design, high efficiency, and long life. Recent efforts have been made to utilize bio-inspired materials in a variety of applications, emphasizing the importance of biomimetics due to their unique advantages and excellent properties. This review examines the synthesis mechanism, properties, and advances of bioinspired materials in the production of nanomaterials in order to pave the way for the future study of rechargeable batteries. Subsequently, the solutions and problems encountered by cathode materials in the main categories of secondary rechargeable batteries are addressed. The aim of this study is to alert scientists toward this promising development trend in bio-inspired battery materials.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3