Fabrication and Analytical Investigation of Reduced Graphene Oxide and Poly-L-Glutathione Based Voltammetric Sensor for the Individual and Simultaneous Determination of Purine Derivative and Metabolites

Author:

Chandran Amoolya,Sam Sonia,Girish Kumar K.ORCID

Abstract

Purine metabolites are considered as recognized disease biomarkers and food quality inspecting parameters. Hence, reliable electro-analytical strategies for the quantification of purine bases are indispensable in clinical point of view. This article proposes an efficient voltammetric sensor based on reduced graphene oxide and poly-L-Glutathione modified glassy carbon electrode (GCE) for the determination of purine bases such as Uric acid (UA), Xanthine (XA), Hypoxanthine (HX) and Theobromine (TB). Surface characterisation of GCE has been carried out via surface area determination, Scanning Electron Microscopy, Atomic Force Microscopy, Raman spectroscopy, Attenuated Total Reflection Spectroscopy, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy. For the simultaneous determination, the sensor offers a limit of detection of 1.83 × 10−7 mol l−1, 6.70 × 10−8 mol l−1, 2.12 × 10−7 mol l−1 and 1.14 × 10−6 mol l−1 for UA, XA, HX and TB respectively. The practical utility of the sensor has been ascertained via analysis in real samples and the findings are validated using conventional analytical methods. Mechanistic aspects involved in the electrooxidation of analytes have been derived using scan rate studies. Wide concentration linear range with low limit of detection and successful applicability studies in tea, coffee, cocoa and artificial physiological samples point towards the efficacy of the analytical assay in real sample analysis.

Funder

Council of Scientific and Industrial Research, India

Kerala State Council for Science, Technology and Environment

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3