Lowering the Impedance of Lanthanum Strontium Manganite-Based Electrodes with Lanthanum Oxychloride and Lanthanum Scavenging Chloride Salts

Author:

Taylor Thomas H.,Muhoza Sixbert P.ORCID,Gross Michael D.ORCID

Abstract

The impact of infiltrating chloride salts on the electrochemical behavior of lanthanum strontium manganite-yttria stabilized zirconia (LSM-YSZ) cathodes was investigated under solid oxide fuel cell operation. Infiltrating a lanthanum chloride solution resulted in the formation of a lanthanum oxychloride (LaOCl) phase. A LaOCl phase also formed by infiltrating an ammonium chloride solution; however, lanthanum was scavenged from the LSM phase to form LaOCl. The third infiltrating solution, a combination of zirconium chloride and yttrium nitrate, formed LaOCl by scavenging lanthanum from LSM and produced YSZ nanoparticles. Electrochemical impedance spectroscopy results suggest that LaOCl improves oxygen adsorption kinetics compared to a baseline LSM-YSZ cathode, reducing the low frequency impedance by 30%. In addition, scavenging lanthanum from LSM improved oxygen ion diffusion polarization as indicated by the observed 40% reduction in high frequency impedance and improved serial ohmic resistance by 19%. Finally, YSZ nanoparticles further reduced the high frequency impedance and ohmic resistance by 45% and 23%, respectively. The findings reveal new strategies for lowering the impedance of LSM-YSZ cathodes.

Funder

National Science Foundation

National Energy Technology Laboratory

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3