Electrochemical Performance of Mixed Redox-Active Organic Molecules in Redox Flow Batteries

Author:

Amini KianaORCID,Jing Yan,Gao Jinxu,Sosa Jordan D.,Gordon Roy G.,Aziz Michael J.ORCID

Abstract

Designing electrolytes based on mixture of different organic redox active molecules brings the opportunity of enhancing the volumetric energy density of flow batteries and removes the requirement of high solubility for individual organic species in the mixture. In the present work, we conduct computational and experimental analysis to investigate the electrochemical performance of mixed redox-active organic molecules. A zero-dimensional transient model is employed to investigate the changes in the half-cell potential and the concentrations and partial currents of individual redox reactions in a mixture of organic molecules over time. The model demonstrates the effects of individual properties of species such as kinetic rate constants, mass transfer coefficients, concentration ratios and standard redox potentials and reports the effect of energy-losing homogenous chemical redox reaction on the voltage efficiency and concentration ratios of the mixed species. Pairs of anthraquinone negolyte species were selected for an experimental case study. A mixture of 2,6-N-TSAQ and 2,6-DHAQ showed 40% increase in the volumetric energy density compared to the performance of 2,6-DHAQ alone. Based on the results of the experimental and computational analysis, we propose guidelines for the design of suitable mixed redox-active organic species.

Funder

Natural Sciences and Engineering Research Council of Canada

Pacific Northwest National Laboratory

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3