Review—Recent Progress on MOFs-based Electrode Materials for Supercapacitor

Author:

Asghar Ali,Ghaly Waleed A.,Awaji Majed Y.,Hakami Othman,Alamier Waleed M.,Ali Syed Kashif,Almashnowi Majed Y. A.,Al-Harthi Enaam A.,Rashid Muhammad Shahid,Imran MohdORCID

Abstract

Supercapacitors (SCs) are gaining popularity as energy storage devices (ESDs), and their electrode materials strongly influence their performance. There is no doubt that SCs are capable and reliable ESDs for producing high power even when they operate at low energy levels. However, highly efficient electrode materials are still required to make the SC an effective choice for ESD. The surface modification of the electrode materials can improve the power and energy density of materials, which is beneficial for enhancing the electrochemical performance of the SC. During the past few years, more research has been reported to develop new electrode materials for improving SCs’ energy density, charge retention, specific capacitance, stability, and rate performance. This review focuses on the execution of progressive organic-based electrode materials called metal-organic frameworks (MOFs) in the SC. The main purpose of this review is to explain the MOFs-based electrode materials and their progress in the field of SC. MOFs are advanced materials for supercapacitors because they allow for various features, including dimensions. They offer high stability, high capacity, adjustable pore size, greater aspect ratios, larger surface areas, and stronger bonding between metal and organic linkers than the previously reported electrode materials (Metal oxide, sulfide, phosphate, etc). These properties of MOFs-based electrode materials make them promising for electrochemical energy storage applications. Finally, the challenges and perspectives of MOFs-based electrode materials are discussed.

Funder

Ministry of Education, Kingdom of Saudi Arabia

Publisher

The Electrochemical Society

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3