Transport Phenomena in Low Temperature Lithium-Ion Battery Electrolytes

Author:

Ringsby Alexandra J.ORCID,Fong Kara D.ORCID,Self JulianORCID,Bergstrom Helen K.ORCID,McCloskey Bryan D.ORCID,Persson Kristin A.ORCID

Abstract

Lithium-ion batteries face low temperature performance issues, limiting the adoption of technologies ranging from electric vehicles to stationary grid storage. This problem is thought to be exacerbated by slow transport within the electrolyte, which in turn may be influenced by ion association, solvent viscosity, and cation transference number. How these factors collectively impact low temperature transport phenomena, however, remains poorly understood. Here we show using all-atom classical molecular dynamics (MD) simulations that the dominant factor influencing low temperature transport in LP57 (1 M LiPF6 in 3:7 ethylene carbonate (EC)/ethyl methyl carbonate (EMC)) is solvent viscosity, rather than ion aggregation or cation transference number. We find that ion association decreases with decreasing temperature, while the cation transference number is positive and roughly independent of temperature. In an effort to improve low temperature performance, we introduce γ-butyrolactone (GBL) as a low viscosity co-solvent to explore two alternative formulations: 1 M LiPF6 in 15:15:70 EC/GBL/EMC and 3:7 GBL/EMC. While GBL reduces solution viscosity, its low dielectric constant results in increased ion pairing, yielding neither improved bulk ionic conductivity nor appreciably altered ion transport mechanisms. We expect that these results will enhance understanding of low temperature transport and inform the development of superior electrolytes.

Funder

U.S. Department of Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3