Corrosion Mechanism of Microporous Nickel-Chromium Coatings: Part II. SECM Study Monitoring Cu2+ and Oxygen Reduction
-
Published:2022-02-01
Issue:2
Volume:169
Page:021509
-
ISSN:0013-4651
-
Container-title:Journal of The Electrochemical Society
-
language:
-
Short-container-title:J. Electrochem. Soc.
Author:
Ganborena Larraitz,
Gonzalez-Garcia Yaiza,
Özkaya Berkem,
García Marta,
García-Lecina Eva,
Vega Jesús ManuelORCID
Abstract
The corrosion mechanism of microporous nickel-chromium multilayer coatings was studied at localised scale by Scanning Electrochemical Microscopy (SECM) after exposure to an aggressive electrolyte (chloride-based one at pH 3.1 containing cupric ions). The open circuit potential was initially monitored during 22 h, followed by a detailed characterisation using Glow Discharge-Optical Emission Spectroscopy and Field Emission Scanning Electron Microscope. Interestingly, Cu deposition occurs over the surface of the microporous nickel layer, and it is located on spots where micro-discontinuities (i.e., cracks and pores) of the outermost Cr layer are present. The application of different operation modes of the SECM (i.e., redox competition and surface generation/tip collection) not only reveals such copper deposits (which were identified after monitoring their catalytic capabilities for oxygen reduction reaction) but also confirms the stepwise reduction of Cu2+ to Cu0 (via intermediate species of Cu+) during the corrosion process. The impact of metallic copper particles in the local pH due to their catalytic activity could also explain why the microporous nickel layer is not corroded after exposure to such electrolyte.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Eusko Jaurlaritza
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献