Corrosion Mechanism of Microporous Nickel-Chromium Coatings: Part II. SECM Study Monitoring Cu2+ and Oxygen Reduction

Author:

Ganborena Larraitz,Gonzalez-Garcia Yaiza,Özkaya Berkem,García Marta,García-Lecina Eva,Vega Jesús ManuelORCID

Abstract

The corrosion mechanism of microporous nickel-chromium multilayer coatings was studied at localised scale by Scanning Electrochemical Microscopy (SECM) after exposure to an aggressive electrolyte (chloride-based one at pH 3.1 containing cupric ions). The open circuit potential was initially monitored during 22 h, followed by a detailed characterisation using Glow Discharge-Optical Emission Spectroscopy and Field Emission Scanning Electron Microscope. Interestingly, Cu deposition occurs over the surface of the microporous nickel layer, and it is located on spots where micro-discontinuities (i.e., cracks and pores) of the outermost Cr layer are present. The application of different operation modes of the SECM (i.e., redox competition and surface generation/tip collection) not only reveals such copper deposits (which were identified after monitoring their catalytic capabilities for oxygen reduction reaction) but also confirms the stepwise reduction of Cu2+ to Cu0 (via intermediate species of Cu+) during the corrosion process. The impact of metallic copper particles in the local pH due to their catalytic activity could also explain why the microporous nickel layer is not corroded after exposure to such electrolyte.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Eusko Jaurlaritza

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference35 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3