Design Principles to Govern Electrode Fabrication for the Lithium Trivanadate Cathode

Author:

Mayilvahanan Karthik,Brady Nicholas,McCarthy Alison H.ORCID,Wang Lei,Marschilok Amy C.,Takeuchi Kenneth,Takeuchi EstherORCID,West Alan C.ORCID

Abstract

A full depth of discharge mathematical model for the lithium trivanadate cathode, considering lithiation of the layered α-phase, phase change, and lithiation of the rock-salt like β-phase at lower potentials, is developed. The coupled electrode-scale and crystal-scale model is fit to electrochemical data, and additionally validated with operando EDXRD. There is good agreement between the simulated and measured spatial variation of the volume fraction of the β-phase. This mathematical model is used to guide electrode fabrication, accounting for both ionic and electronic transport effects. Values of three design parameters—electrode thickness, porosity, and volume fraction of conductor—are identified, and the sensitivity of the energy density to these design parameters is quantified. The model is also used to investigate electrode design to create electrodes that deliver the maximum achievable energy density under the constraint that the α to β-phase transition is avoided, since phase change has been demonstrated to reduce cycle life. The energy density sacrificed to avoid phase change decreases at higher discharge rates, but the target values for electrode fabrication remain the same as those when optimizing the electrode for the full depth of discharge.

Funder

U.S. Department of Energy, Office of Science, Basic Energy Sciences

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3