Bismuth Enables the Formation of Disordered Birnessite in Rechargeable Alkaline Batteries

Author:

Bruck Andrea M.ORCID,Kim Matthew A.,Ma Lu,Ehrlich Steven N.,Okasinski John S.,Gallaway Joshua W.ORCID

Abstract

Recent advances in rechargeable Zn/MnO2 alkaline batteries have shown promise for scalable energy storage systems which provide a safe, low-cost alternative with a demonstrated lifetime over thousands of cycles. This cathode technology is based on a 2-electron Mn redox process where a layered birnessite-type phase has been shown to form after the first cycle with excellent reversibility between the discharge product, Mn(OH)2. Herein, we investigate the reversible reaction between birnessite and Mn(OH)2 with and without a Bi2O3 additive using multimodal structural characterization techniques during active battery cycling. Diffraction results provide evidence of Bi3+ residing in the interlayer of birnessite which prevents irreversible Mn3O4 formation by limiting Mn3+ diffusion within the crystal lattice. Also, upon charge no MnOOH intermediate phases are observed. Instead, X-ray absorption and Raman spectroscopy indicate a disordered, non-crystalline birnessite-type phase consisting of mostly neutral H2O within the interlayer. Birnessite phases will reform without Bi2O3 present, but Mn3O4 formation severely polarizes the potential they are formed at, leading to capacity fade. Also, we discuss the reversible Bi2O3 conversion to Bi0 and its contribution to the observed capacity. We expect the results will provide crucial insight into the development of aqueous, rechargeable battery systems utilizing MnO2.

Funder

U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3