Effects of Sputtering Pressure on Electrochromic Properties of NiO films Prepared by DC Magnetron Sputtering

Author:

Li HaonanORCID,Li YuechanORCID,Li Xiuxiu,Xie An,Sun Dongya,Wang Yi

Abstract

In this paper, nickel oxide films were deposited on ITO-coated glass substrates by DC magnetron sputtering at different pressures(1.2 Pa ∼ 3.0 Pa). The effects of sputtering pressure on microstructure and electrochromic properties of nickel oxide films were investigated. The film thickness was measured by a surface profilometer. The crystal structure and surface morphology of the films were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochromic properties of the films were studied by combining UV-visible spectrophotometer with electrochemical workstation. The results showed that the nickel oxide film obtained the best surface morphology (uniform grain size and the fewer surface cracks) and outstanding electrochromic performances, including large transmittance modulation (ΔT = 57.19%), high coloration efficiency (CE = 33.59 cm2·C−1) and fast switching speed (tc = 4.63 s, tb = 4.87 s) at a wavelength of 550 nm when the sputtering pressure was 2.4 Pa. And after 500 electrochemical cycles, the transmittance modulation could continue to increase to 61.49% and the coloration efficiency can still be maintained at about 28.21 cm2·C−1, which showed excellent cycling durability.

Funder

Open Fund of Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology

National Natural Science Foundation of China Joint Fund for Cross-strait Scientific and Technological Cooperation

Key Project of Natural Science Foundation of Fujian Province

Pandengketi of Xiamen University of Technology

the Natural Science Foundation of Fujian Province

Support and training program for top young talents of "young eagle program" in Fujian Province

Major Project of Science and technology of Xiamen City

Natural Science Foundation of China

Key Technical Innovation and Industrialization Projects of Fujian Province

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3