Effect of Subtle Changes in Ni2+/Ni3+ and Particle Surface Area in LiNi0.5Mn0.5−xCoxO2 (x = 0.1–0.3) Cathode Materials for Lithium-Ion Batteries

Author:

Senthil Arumugam RajalakshmiORCID,Shunmugasundaram RameshORCID,Safonova Olga V.ORCID,Wood VanessaORCID

Abstract

In Li[Ni,Mn,Co]O2 (NMC) cathode materials, small changes in transition metal ratio and particle surface area can significantly impact capacity retention. To understand the combined effect of transition metal ratio and the particle surface area, we studied LiNi0.5Mn0.5−xCoxO2 (x = 0.1–0.3) particles with two different morphologies: dense, spherical particles and high-surface area aggregates. All compositions in this series contain the same percentage of Ni but have differing amounts of Ni2+ and Ni3+. While Ni2+ tends to induce anti-site defects predominantly in the bulk, Ni3+ promotes particle surface reconstruction, both of which negatively impact capacity retention. Upon cycling to 4.4 V for 100 cycles, we observe that particles of high surface area with high Ni3+ concentration undergo the most severe capacity degradation. However, high surface area particles with high proportion of anti-site defects undergo sluggish capacity fade. Overall, with 60% of Ni2+ and 40% of Ni3+, spherical NMC 532 particles endure the detrimental effects of anti-site defects and surface reconstruction, but neither too prominently and thus emerges as the best candidate among the studied samples. This study highlights the synergy between transition metal ratio and particle surface area and how it determines the properties of the NMC cathode materials.

Publisher

The Electrochemical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3