Oxidized Multiwalled Carbon Nanotubes as Components and Oxidant Agents in the Formation of Multiwalled Carbon Nanotube/Polyazulene Composites

Author:

Grądzka EmiliaORCID,Breczko Joanna,Bonarowska Magdalena,Wysocka-Żołopa Monika,Basa Anna,Winkler KrzysztofORCID

Abstract

This work describes the practical and facile synthesis of oxidized multiwalled carbon nanotube/polyazulene (ox-MWCNT/PAZ) composites. In the proposed procedure, oxidized multiwalled carbon nanotubes were used both as components and oxidant agents in the formed composite material, which eliminated the use of conventional oxidizing agents such as ferric chloride. The properties and morphology of composite materials depend on the synthesis conditions, such as monomer concentration, synthesis time and synthesis temperature. The composite material is much more stable at high temperatures than pristine polyazulene. Additionally, the electrochemical performance of composite materials is better than that of pure polymeric materials. The highest specific capacitance of the ox-MWCNT/PAZ composite equals 381 F gPAZ −1. This value is approximately 5 times higher than the specific capacitance of pristine polyazulene. This high value results from the larger surface area of the composite material and its easier penetration by counterions of the supporting electrolyte during the oxidation process. Apart from the traditional doping process by counterions, the composite material is additionally codoped by hexafluorophosphate anions of the supporting electrolyte, which form hydrogen bonds with surface hydroxyl groups of ox-MWCNTs.

Funder

Polish National Centre of Science

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3